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Abstract.

We employ the concept of an approximate pseudo-inverse (API) of a singular linear operator
A to construct algorithms that yieJd the MoorePenrose pseud~inverse solution z+ = A+V
to the singular system Az = y. Such an algorithm is a nonmatrix representation of the
Moor+ Penroee pseudo-inverse A+ of A. We are particularly interested in fmt algorithms
/executable in O(n) operations) that are fully ed?lcient on parallel computers. Onc result
presented concerns the construction of APIs for consistent problems and is applied to the
tw~dimensiomd free-boundary spline interpolation problem. For this problem, the cow’u-
gate gradient algorithm, preconditioned with an API, proves to he very effective, The
V-cycle multigrid algorithm FAPJN is shown to he an AP1 if the smoother satisfi~’; a certain
condition and proves to be very effective for Poisson’s problem on a twe toru~, We have
demonstrated our aJgorithrns for n close to one million on the iPSC hypcrcubc at Christian
Michelsen lns~itute, Bergen,

1. Introduction

If the large sparse linear operator A: X --+~ is singular, then the lincnr systcrn

Ax=y (1)

may have no solution, which is the cam when y # R(A), In this situation) our task is often
to find a best approximate solution, or a lead squares fit to the data y, which is any z ~uch
that [1v – Az[l is minimized, When X and ~ are finite dimensional Iiill)crt Rpaccs, our

primary concern in numerical computation, not only do such best nl~l)r{)~imntc solutions
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z always exist, but there is a unique best approximate solution of minimum norm. This
we denote z+ and refer to as the Moore- Penroee solution of equation (1). The operator
A+ : Y + X : y ++ z+ turns out to be linear and is called the Moore-Penrose pseudeinverse
of A. For more details see Moore [14], Penrose [15], or Ben-Israel and Greville [1].

Our task is to derive fast parallel algorithms for A+, algorithms which will allow us
to evaluate z+ = A+y as eHiciently aa possible on a parallel computer. Our approach
is to define an approximate pseud~inverse to A and Bhow that these can sometimes be
constructed efficiently on a parallel computer. When they can, they provide an effective
construction of the exact MoorePenrose pseud~inverse A+.

Definition 1. The Jinear operator Z: Y + X is an c-approximate pseudo-inverse (6-API)
of the linear operator A: X + Y if c < 1 and

II (Z - ZAZ)VII S c II ZU II ~vf=Y , N(Z) L R(A) , and Z(Z) L N(A) . (2)

Using the concept of an c-API, we can state a simple defect correction (DC) algorithm for
the solutlon of (1) as the following:

Ialgorithm API-DC

rn = y – Axn, zn+l = z“+ Zrn

Theorem 1. If Z ia an ~– apprcrcimate pseudo-inverse of A, then algorithm API-DC

converges at the geometric rate c, for any initiaJ approximation Z“, to an x such that
1]v - AzI[ is minimized. If ZO = (/, then x is the Moore-Penrose pseudo-inverse solu tion
Z+ = A+~,

A detailed proof may be foul id in Fredrickson and Benson 19]. For a fuller discussion
~f the iterative ~olution of singuliir systems, see Ben-Israel and Greville [1] and Keller [12],
Our primary interest, in this p~~per k to show t.hat there are highly parallel algorithms
which implement the ccmcept o“ an API and therefore, through Theorem 1, provide a fact
representation of A+, In the r,ext section! wc show that the orthogonality condition in
X is handled easily for consib’ ent systems ITISection ~1,we show that a preconditioned
conjugate gradient algorithm can be an (!I1,<~1, r represe ~tation of A+ if an API is uacd
ae a prcconditioner, Phrased another w:,:!, (JI i-accelerat on of the API-DC algorithm is
possible under certain conditions. We derl~(jllstrute this or a rather large singular problem,
one of dimension 500,000 and with a null S;MCC()!’dimem w 3000, on an iPSC hypercubc,
For details see Section 6, In Section 4, wc sht,w t ‘at the rnu]tigrid algorithm FAPIN
(fast approximate pmudo-i,,verm) can provt,lr an effcctivo representation of an AI)] on a
hypercubc.

Consistent, but underdct crmirml, linmr s) I CrIMarc pnrtir. ulnr]ymwy to handk bccalmc wc
nro aido to concwtratc or, t,hc incqun]ity ill I }IV(Idinition of AI)] nnd ignmc WC orthogonality

conclitionso



Theorem 2. If the linear operator A : ~ ~ Y j~ onto, that js R(A) = IJ, and the linear

operator B : Y -~ X satisfies the inequality

IIz - BAzII < (<~ -1) IIz II Vz 1 N(A) (3)

fornome c <1, then Z = A*B*B is an c - API of A.
*

Proof: R(Z) L N(A) follows from the fact that R(Z) = R(z. ,. For any z -L N(A)

II(1 - A’B*13A)z~l =1~ (1 - {1 - (1 - A* Z3*))(I - (J - IIA)))zII

<Ii (1– A* B*)zII+ II (1 – BA)z II+ II(1 - A- B”)(I - 13A)z{I < c IIzII.

Since R(A) = j/ , N(Z) c R(A). Thus if N(Z) #O, we can find z G X such that ZAZ = O,
violating the inequality. ●

As demonstrated on the spline interpolation problem below, the above approach can
provide an effective solution method. For related results, see Bjorck and Elfvi,ng[4] or Elfving
[6], where a symmetric successive overrelaxation technique is used as a prcconditioner for
the conjugate gradient method applied to AA*z = V.

3. Approximate Inverses

Suppose now that the linear spaces X and J/ have bases {zi, i c 1} and {yJ, j c J}, with
respect to which the linear operator A has a sparse matrix representation, In some cases,
we are able to construct an API that also has a sparse matrix representation, perhaps with
the same sparsity as A“, One way to do this generalizes the concept of an LSQ approximate
inverse [2,$] that has proven quite effective for nonsmgular linear systems.

Definition 2. The LSQ approximate pseudo-inverse of A is the operatc~r Z = IIXBRY,
where !lX projects onto J/L(A), IIY projects onto R(A), and B minimizee the Frobenius
norm

II ~- BA 11~ (4)

subject to the constraint that B have the same graph (non-zero structure) M A*,

For example, ftic I irubic spline interpolation operator on a tw~torus is defined by the
9-point operat r

A=&f: f, :) ~ (~)
‘U(l

which i~ both s]mrw and diagonally dominant,

‘ 0.1541

[

Z - LSQ(A) = -0.6603
0!1541

4 1)

A.n elementary calculation shows that

--0,6603 0,1541
2,830 \-0,6603 . (G)
0,6603 0,1541 )

Notrethfit Y IIIS t,hcmmc cartcsian product Htructure m A, ‘Won in the variable wcfllciont

CMC) thin COII!I rllction i~ incxpmnivc and parallel bocauso thr Varintionnl oqumtions thnt
ddino H t-hxxIIII)lv w that the equatiom for the rown cf l) are indcpmdcnt, Mor(!r)vcr,



for some interesting problems (such as the Lapiacian on a tw-torus, which we consider in
Section 4), the projection TIXand IIr are inexpensive. IrIother cases, the method suggested
by Theorem 2, which does not rely on the availability of efficient projection operators, is
more appropriate, This is what we use to precondition the conjugate gradient operator in
the next section.

4. XP1-CG: An API-Preconditioned Coqjugate Gradient Algorithm

If the operator A: X ~ Y is nonsymmetric as well as singular, we can be sure that the
standard conjugate gradient algorithm will have difficulty. ‘he recent papers of Faber and
Manteuffel [7] and [8] contain a clear discussion of the limitations of the standard conjugate
gradient algorithm and the class of generalizations that they refer to as orthogonal error
methods. on the other hand, Kammerer and Nashed [11] and Bjorck and Elfving [4] and
[6] have shown that the preconditioned conjugate gradient algorithm of Concus, Golub, and
O’Leary [5] may be used, under certain conditions, to solve singular linear systems. We will
see that when Z is an API of A with the additional property that 2A: X - X is symmetric,

the following preconditioned conjugate gradient algorithm converges.

algorithm API-CG

initiate : rOZy– AZO

qQ = Zro

~o = ~o

iterate : ai = (qi, ri)/@, Api)

=9+1 = xi +aip$

r i+l ~y ri
– ai Api

9
i+l = jzri+l

/)i = (qi+l, ri+l)/(qi, ri)

P
i+l = i+l

9 + bipi

,.

We have obtained particularly good convergence rates using the inner product (z, ~) =
(z, A+y) in conjunction with an-API of the form Z = A*B*B. The evaluation of both”inner
products required by the API-CG algorithm is easy in this situation, To understand thi~,
note that

(qi, rJ) =: (Z#, A“*ri) = (ri, B”BAAq r~) = (Bri,l)ri), (7)

with the last reduction using the fact that r~ G R(A), Observing that p~ E R(z) = R(A*),
wc compute

(pi, ApJ) = (pi, A’ Ap~) : (pi,PJ), (8)

which iri certainly easy to evaluate,



Theorem S. YfZ ia an r- approximatepeeud-inveree of A and %A: X -O y h symmetric,
then the API-CC algorithm converg-, for any v E Y and any Z“ c X, to an x such that
IIv - Azll is minimised. The error ●t the dh iterate matiefi~the inequality

IIZ - Znll < 4(c/2)an II Z“ II . (9)

If Z“ = O, then the bit z is the Moore-Penroeepeeudeinverw ecdutionz+ = A+U. TINIS
the AP1-CG algorithm m“thZ“ = O ie an eflhctiverepresmtation of the Moon+Penroee
peeudo-invereeA+ of A.

For a proof we refer the reader to Reference [9].
.

6. The lkt Approximate Pseudc+Inverae FAPIN

If the linear operator A : X ~ Y ie very poorly cmditioned ae well ae singular, we
may expect it difficdt to find an c-API that ie powerful enough to make even the API-
CG algorithm converge aa faat M we would like. We do, however, know how to deal with
diecretizationo of ellipt~c partial differential equatiom: the antithesisof their ill-conditioning
is the multigrid algorithm in one of ita mamyvariante. We d=ribe one V-cycle of a multigrid
algorithm M an approximate inveree. If the smoothing ia done properly, ueing an API of A,
and if a projection ie ineerted in the right place, the result ie an approximate peeudcAnveree,
which we refer to ae a f~t approximate paeudeinveree, or FAPIN. Chooeing the correct
smoothing step ie the key to building thie algorithm.

Deflrdt!on 3. The Jinear operatore Zh: Yk + & are an c-neeted approximate pmtid~
inverse (c-NAPI) of the ]inoti operatore ‘Ah: ~k ~ Y& if c <1 an-d

II(~ - i?& A&)U112 s C2 II U’lla + IIU“ 112 vu ~ N(X~) ,

~(zk) ~ ~(A&) , and R(Zk) ~ #(A&) ,

where u = U’ + U“, U’ ● ~(&l), u“~~(&l) .

Edgdtb FAPIN( k, r& )

i$ k>O, then

r&= ~&r&

r&-~ = p&r&

w&_l = FAPIN(k – l,rk.~)

w& = ~~wk-l

8& = r& - AkW&

w& = w& t z&8&

elee

Wk = Zero”

endij

return w&



Theorem 4. Zf for some c c 1 and all O < j < k, Zj is a nested approximate pseudo-

inverse of Aj, then FAPIN(k, * ) is an c-API of Ak, and may be used in either API-DC
or APLCG to provide an effkctive representation of the Moore-Penrose pseudo-inverse A+
of A.

The interested reader is referred to Reference [9] for e detailed proof.

5. Hypercube Computations

We study a free boundary spline interpolation problem in the plane. Consider a discrete
mesh with spacing h in the z and y directions and with n~ md nv points in the x ~d y
directions, respectively. At each intert”or point, a value for the function to be interpolated
is provided. Thus, applying the bicubic spline interpolation operator at these points yields
(n= - 2)(tav -2) equations in nznu unknowns, a consistent system for any data because the
operator is of full rsnk.

We have implemented the algorithms presented here on the 32-node iPSC hypercube
at Christian Michelsen Institute in Bergen, Norway. We used the high-level CMI library
as the basis for our computations and added an efficient procedure that evaluated any
of the operators A, A*, B, and B*, using a 7 by 7 array of 3 by 3 arrays to store the
coefficients. The API–CG algorithm requires more communication cost than the API-DC
algorithm because of the inner products. As shown in Table I, this is more than offset by
the enhanced performance.

Table I. Computational Results for the Free-Boundary Spline Problem*

API-DC
N per(1) per(8) T(8)/N per(1)

211 0.332 0.271+3 4.69 0.125

213 0.341 0.321 e-3 3.36 0.123

216 0.344 0,325 e-3 2.98 0.119

217 0.346 0.328e3 2.86 0.120

219 0,347 0,332e-3 2.83 !).119

API-CG
per(8) T(8)/N

0.732+5 5.88

0.754e-5 4.02

o.716e-5 3.50

0.674+5 3.34

0.629e-5 3.29

*Free-boundary spline problem results using the linear station-
ary iterative process API-DC and the API-CG algorithm, N is
the number of unknowns. per(n) =[[ rn [[2 / [[ r“ [[2, T(n) is
the time for n iterations in milliseconds.



6. COnCh18iOIl

The concept of an approximate pseud~inverse provides a useful tool for the implementation
of the exact Moore-Penrose pseud~inverse A+ of a singular linear operator A and, in
some circumstances, allows an O(N) implementation of A+. We have described a simple
construction technique for an API that is useful for consistent singular problems and have
applied such APIs to the large sparse underdetermined system arising from free-boundary
spline interpolation. The rate of convergence was independent of the order of the problem in
this example, which was demonstrated for orders up through a half million, showing that we
indeed had an O (IV) implementation of A+. We also demonstrated the effectiveness of ~be
fast approximate pseud~inverse FAPIN, a V-cycle multigrid algorithm using an API as a
smoother, on Poisson’s problem on a tw-torus of size a quarter million. These APIs proved
to be almost perfectly parallelizable, which we demonstrated using the iPSC hypercube
at the Christian Michelsen Institute in Bergen. They also proved to be very effective
preconditioners for the conjugate gradient algorithm, and allowed the API-CG algorithm
to be applied to a nonsymrnetric problem, such as the free-boundary spline interpolation
problem.
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